166 research outputs found

    Existence of positive solutions in the superlinear case via coincidence degree: the Neumann and the periodic boundary value problems

    Full text link
    We prove the existence of positive periodic solutions for the second order nonlinear equation u"+a(x)g(u)=0u" + a(x) g(u) = 0, where g(u)g(u) has superlinear growth at zero and at infinity. The weight function a(x)a(x) is allowed to change its sign. Necessary and sufficient conditions for the existence of nontrivial solutions are obtained. The proof is based on Mawhin's coincidence degree and applies also to Neumann boundary conditions. Applications are given to the search of positive solutions for a nonlinear PDE in annular domains and for a periodic problem associated to a non-Hamiltonian equation.Comment: 41 page

    Chaotic dynamics in the Volterra predator-prey model via linked twist maps

    Get PDF
    We prove the existence of infinitely many periodic solutions and complicated dynamics, due to the presence of a topological horseshoe, for the classical Volterra predator--prey model with a periodic harvesting. The proof relies on some recent results about chaotic planar maps combined with the study of geometric features which are typical of linked twist maps.Comment: 24 pages, 4 figure

    Multiple positive solutions for a superlinear problem: a topological approach

    Full text link
    We study the multiplicity of positive solutions for a two-point boundary value problem associated to the nonlinear second order equation u+f(x,u)=0u''+f(x,u)=0. We allow xf(x,s)x \mapsto f(x,s) to change its sign in order to cover the case of scalar equations with indefinite weight. Roughly speaking, our main assumptions require that f(x,s)/sf(x,s)/s is below λ1\lambda_{1} as s0+s\to 0^{+} and above λ1\lambda_{1} as s+s\to +\infty. In particular, we can deal with the situation in which f(x,s)f(x,s) has a superlinear growth at zero and at infinity. We propose a new approach based on the topological degree which provides the multiplicity of solutions. Applications are given for u+a(x)g(u)=0u'' + a(x) g(u) = 0, where we prove the existence of 2n12^{n}-1 positive solutions when a(x)a(x) has nn positive humps and a(x)a^{-}(x) is sufficiently large.Comment: 36 pages, 3 PNG figure

    Pairs of positive periodic solutions of nonlinear ODEs with indefinite weight: a topological degree approach for the super-sublinear case

    Get PDF
    We study the periodic and the Neumann boundary value problems associated with the second order nonlinear differential equation \begin{equation*} u'' + c u' + \lambda a(t) g(u) = 0, \end{equation*} where g ⁣:[0,+[[0,+[g \colon \mathopen{[}0,+\infty\mathclose{[}\to \mathopen{[}0,+\infty\mathclose{[} is a sublinear function at infinity having superlinear growth at zero. We prove the existence of two positive solutions when 0Ta(t) ⁣dt<0\int_{0}^{T} a(t) \!dt < 0 and λ>0\lambda > 0 is sufficiently large. Our approach is based on Mawhin's coincidence degree theory and index computations.Comment: 26 page

    Remarks on Dirichlet problems with sub linear growth at infinity

    Get PDF
    We present some existence and multiplicity results for positive solutions to the Dirichlet problem associated with; under suitable conditions on the nonlinearity g(u)and thew eight function a(x): The assumptions considered are related to classical theorems about positive solutions to a sublinear elliptic equation due to Brezis-Oswald and Brown-Hess

    Some Remarks on Fixed Points for Maps which are Expansive along one Direction

    Get PDF
    We present some fixed point theorems for planar maps which satisfy a property of path–expansion along a certain direction. We also show some links between these fixed point theorems and other recent results about covering relations and topological horseshoes
    corecore